Reasoning About Action II:
The Qualification Problem

Matthew L. Ginsberg
David E. Smith

Computer Science Department
Stanford University
Stanford, California 94305

Reasoning About Action II:
The Qualification Problem

Abstract

We present a computationally effective approach to representing and reasoning about actions
with many qualifications. The approach involves treating actions as qualified not by specific
facts that may or may not hold when the action is executed, but instead as potentially
qualified by general constraints describing the domain being investigated. Specifically, we
suggest that the result of the action be computed without considering these qualifying domain
constraints, and take the action to be qualified if and only if any of the constraints is violated
after the computation is complete.

Our approach is presented using the framework developed in [6], where we discussed a
solution to the frame and ramification problems based on the notion of possible worlds, and
compared the computational requirements of that solution to the needs of more conventional
ones. In the present paper, we show that the domain constraint approach to qualification,
coupled with the possible worlds approach described earlier, has the remarkable property that
essentially no computational resources are required to confirm that an action is unqualified.
As before, we also make a quantitative comparison between the resources needed by our
approach and those required by other formulations.

1 Introduction

1.1 The problem

An important requirement for many intelligent systems is the ability to reason about actions
and their effects on the world. There are several difficult problems involved in automating
reasoning about actions. The first is the frame problem, first recognized by McCarthy [13].
The difficulty is that of indicating all those things that do not change as actions are performed
and time passes. The second is the ramification problem (so named by Finger [3]); the
difficulty here is that it is unreasonable to explicitly record all those things that do change
as actions are performed and time passes. The third problem is called the qualification
problem. The difficulty is that the number of preconditions for each action is immense.

McCarthy first identified the qualification problem in 1977 [10] in the context of the
missionaries and cannibals puzzle. He noted that in order to be able to use a boat to cross
a river one would need

. a qualification that the vertical exhaust stack of a diesel boat must not be
struck square by a cow turd dropped by a passing hawk or some other event that
no-one has previously thought of. [10]

A more familiar example of the qualification problem (also due to McCarthy) is the
“potato in the tailpipe” problem. Omne precondition to being able to start a car involves
having the key turned in the ignition, but there are many others. For example, there must
be gas in the tank, the battery must be connected, the wiring must be intact, and there
can’t be a potato in the tailpipe. It would hardly be practical to check all of these unlikely
qualifications each time we were interested in using the car.

To describe the qualification problem more formally, we will use a simple situation cal-
culus to talk about the world. Let the predicate holds(p, s) indicate that the proposition p
holds in the state s. We also denote by p(a) the preconditions of an action a, and by C(a)
the set of consequences of the action a given that the preconditions hold.! An action can
now be characterized by an axiom or axioms of the following form:

¢ € C(a) Aholds(p(a),s) — holds(c,do(a,s)),

where do(a, s) refers to the situation after the action a has been performed. The qualification
problem is that there are a great many clauses appearing in the complete precondition p(a).
It is difficult to enumerate them all, and computationally intractable to check them all
explicitly.
This overall problem consists of three distinct difficulties:
1. The language or ontology may not be adequate for expressing all possible qualifications
on the action a,

2. It may be infeasible to write down all of the qualifications for a even if the ontology is
adequate, and

3. It may be computationally intractable to check all of the qualifications for every action
that is considered.

In this paper we will be concerned only with the second and third of these issues — how to con-
veniently express qualifications and how to reason with them in a computationally tractable
way. We will not consider the problem of recognizing or recovering from qualifications that
cannot be described within the existing ontology or language of a system.

1.2 The default approach

There has been a recent resurgence of interest in problems of commonsense reasoning about
actions and their consequences. Several authors [9, 12, 11, 15] have suggested that the qual-
ification problem can be effectively addressed by grouping together all of the qualifications
for an action under a disabled predicate. This predicate is then assumed false by default
in any particular situation. For example, given an action a with explicit preconditions p(a),
explicit consequences C(a) with ¢ € C(a) and additional qualifications g(a), we could write

holds(p(a),s) A ~disabled(a,s) — holds(c,do(a,s))
holds(g(a),s) — disabled(a,s),

1This description of an action is the one we used in [6].

Figure 1: Move A to B’s location

Figure 2: The dumbbell problem

together with the default rule
: ~disabled(a, s)

—disabled(a, s)

In other words, if the action’s preconditions hold in state s, and the action is not disabled,
then the consequences will hold in the state resulting from the execution of the action. The
advantage of this approach is that a system does not need to reason about all of the obscure
qualifications that might prevent each action from being executed. They can be assumed to
be false, unless the contrary has been shown by some form of forward inference.
Unfortunately, there are still some serious difficulties with this approach. Consider a
simple blocks world consisting of a floor with two blocks on it, as shown in Figure 1, and
a single operation move(b,!) that moves the block b to location I. One qualification on this
action is that the intended destination for a move operation must be vacant. We might
express this as:
holds(on(z,!),s) — disabled(move(y,!),s). (1)

If z is in some location [, the action of moving y to that location is disabled.

Now suppose that we complicate matters by allowing blocks to be connected together as
shown in Figure 2. (We will henceforth refer to this as the dumbbell problem.) If we try to
move the block A to the location occupied by B, B moves also, and will therefore not be in
the way when A arrives. In this case, the fact that B is in the way is not a qualification on
the action. So we need to modify (1) to become:

on(z,l) A —connected(z,z) — disabled(move(z,!)), (2)

indicating that an object at the destination of an intended motion disables that action unless
it is connected to the object being moved. (We have dropped the situation variable in (2)
in the interests of simplicity.)

Figure 3: The blocked dumbbell problem

The “blocked dumbbell” problem shown in Figure 3 requires that we introduce still more
qualifications on the move operator. Now the presence of C blocks the action, since B is
unable to move to its new location. We have to modify (2) to produce something like:

on(z,l') A connected(z,y) A —connected(y,z) A
induced-position(y,!',move(z,!)) — disabled(move(z,!)). (3)

This axiom states that a move action will be disabled if an object connected to the object
being moved is prevented from reaching its new location.

The increased complexity is a consequence of the fact that the disabling rules (2) and
(3) need to anticipate the ramifications of the move action, but the possible ramifications
become increasingly numerous and complicated as the complexity of the domain increases.

In addition to these epistemological problems, this complexity also leads to computational
difficulties. As the number of ramifications grows, it becomes impractical to forward chain
on the direct results of an action in order to determine and record which of the subsequent
actions may be blocked.

As an example, suppose that we are working in a blocks world domain containing n
blocks. If none of the blocks is connected to any other, then for some specific block b, there
will be n — 1 locations to which b cannot be moved because these locations are occupied
by other blocks. Since there are n — 1 disablers for the action of moving each block, there
will o(n?) disablers that must be computed and stored for the entire domain. (This result
continues to hold if some of the blocks are connected together.)

In Section 5, we will discuss a backward chaining approach to this problem, and show
that it, too, suffers from severe computational difficulties.

Implemented systems for reasoning about action have taken a similarly “exhaustive” ap-
proach to dealing with qualification. In STRIPS [2] or QA-3 [7], for example, all qualifications
need to be listed explicitly.? The computational properties of approaches such as these are
comparable to those of the default approach we have described in this section.

1.3 Approach

In the examples above, the move operation always failed because there was something in the
way. It would therefore seem that we should be able to derive the above qualifications from

2 Although these approaches do not use a disabled predicate, they could easily be modified to do so. No
nonmonotonic reasoning would be needed, because they maintain complete descriptions of their domains.

4

more general constraints on the world. In the blocks world, one of the domain constraints is
that an object cannot be in two places at once. Another domain constraint is that no two
objects can ever be in the same place at the same time. We could state these formally as:

on(z,[)ANl#1 — -—on(z,l')
on(z,l)\Nz#x — -—on(zl). (4)

If we try to move a block to a location that is already occupied, the resulting world will
be in contradiction with the domain constraint (4). We conclude that the action cannot be
performed.

A similar argument can be made for the potato in the tailpipe problem. In this case, it
is inconsistent for an engine to be running with a blocked exhaust. It follows that a car with
a blocked exhaust cannot be started.

Unfortunately, there is a serious flaw in these arguments. The trouble is that we have
not distinguished between things that an action can change (ramifications) and those that
prevent it from being carried out (qualifications). In our blocks world example, it may very
well be that a block in the way will defeat a move operation. On the other hand, it might
be the case that the robot arm is sufficiently powerful that any block in its way simply gets
squashed or knocked aside. Given only the domain constraint, we have no way of knowing
which is the case.

The same is true for the potato in the tailpipe problem. Given a car with a potato in its
tailpipe, how are we to know whether turning the key in the ignition will have no effect, or
will blow the potato out of the tailpipe? Surely a potato in an exhaust nozzle of the space
shuttle would not prevent it from taking off, but nowhere have we provided any information
distinguishing the two cases.

The problem is essentially this: Given that the results of an action may include arbitrary
inferential consequences of the explicitly stated results, we need to distinguish legitimate
qualifications for an action from possible ramifications of the action.?

One solution to this problem is to explicitly identify, for each potential ramification of
an action, whether or not it can act to qualify the action in question. Unfortunately, the
number of potential ramifications of an action grows exponentially with the complexity of the
domain [6], so that any approach to the formalization of action that requires the exhaustive
enumeration of all of an action’s ramifications will become computationally intractable when
dealing with complex domains.

The approach we will take to this problem is to indicate, for each possible action, which
subset of the domain constraints can potentially block the action. In our blocks world
example, the domain constraint that no two things can be in the same place at the same
time qualified the failing move operations. In the car example, the constraint about exhaust
blockages leads to the qualification.

3The situation is not quite this simple, since in many cases it may be desired for the ramifications and
qualifications of an action to interact. The self-fulfilling dumbbell problem is one example; in Section 3.1 we
introduce a set of examples involving self-defeating actions.

We will describe this approach in terms of an extension to our earlier work on the frame
and ramification problems [6]. In that work we showed how the result of an action could be
taken to be the nearest possible world in which the explicit consequences of the action held.
The possible worlds here are those defined by Lewis [8] and explicated in [4]. For example,
imagine a robot considering moving a bookcase from one location to another. The expected
result would be the nearest world to the current one in which the bookcase was at its new
location. In this world, the bookcase would no longer be at its old location, and everything
on or in it would also be at the new location. Furthermore, heating ducts and pictures might
be covered in this new world as a consequence of the new position of the bookcase.

In [6], we also developed a method for efficiently computing these possible worlds. It
involves examining proofs of the negation of the explicit consequences of an action, and
removing one premise from each such proof. We review the definition of possible worlds
and the mechanism for computing them in Section 2, and will rely on this information in
subsequent sections.

Before proceeding, however, there are some general issues that should be discussed. First,
we should emphasize that there is no intrinsic connection between describing qualification in
terms of domain constraints and the possible worlds construction of [4, 6]. The approach we
will present can be incorporated into any approach to reasoning about action that is based
on domain constraints. The reason we discuss our solution in terms of the possible worlds
construction is that the computational properties of this approach combine conveniently with
domain constraint descriptions.

Second, there are significant shortcomings involved in thinking of qualification in terms
of domain constraints. The reason is that a domain constraint such as that appearing in (4)
is instantaneous, describing a restriction on the state of the world at a moment in time. It
conveys no information at all about the underlying reason for any particular qualification,
and gives no indication of what the result will be if we attempt a qualified action, such as
that of Figure 1.

If we want to predict the result of an action such as this, we will in general need a
more detailed description of our domain. In Figure 1, for example, we might describe the
move action in terms of forces and accelerations, allowing us to determine the results of the
qualified action.* Perhaps A bumps into B and stops, perhaps B is displaced after all, or
perhaps one of the blocks is damaged as a result of the impact.

This redescription, however, is also in terms of instantaneous domain constraints (New-
ton’s third law, in this case). If we want to determine the result of attempting a qualified
action, this sort of an ontological shift will be needed. The reason for this is that we need to
work with a level of description sufficiently detailed that the action being considered is not
qualified. We see from this that, short of working at a level of detail sufficient to guaran-
tee that no action is ever qualified, the problem of identifying qualified actions will persist.
The approach we will describe in this paper can identify qualified actions using a domain
description at any level of detail. In addition, the ability to identify qualified actions at a

*Yoav Shoham has also suggested using this reformulation to determine whether or not the action was
qualified in the first place.

high level of abstraction can be used to determine under what circumstances a more detailed
formulation must be considered.

1.4 Organization

Section 2 provides an overview of the possible worlds construction developed in [6]. In Section
3, we show how qualifications can be succinctly described by associating a set of qualifying
domain constraints with each action, and show how this approach can be used to deal with
examples like the dumbbell and blocked dumbbell problems.

Section 4 discusses the implementation of our ideas, and presents several examples of
the approach in action. A remarkable feature of the approach we are proposing is that it
takes essentially no longer to check an unqualified action to see if it is qualified and to then
compute the result than it does to merely compute the result itself.

In Section 5, we present a comparison between the computational requirements of our
inferential approach and those of the “exhaustive” approach presented in Section 1.2 and used
in existing systems. We also compare our approach to the “partially exhaustive” approach
introduced in Section 3.2.

Finally, in Section 6 we discuss some epistemological issues arising out of our approach,
describe some difficulties with it, and suggest some alternatives for consideration.

2 Possible worlds

Our solution to the qualification problem can be best understood within the framework
provided by an existing method for reasoning about action. The framework that we will
use for this purpose is the one based on possible worlds and discussed in [6]. That work is
reviewed briefly here. The essential idea is to take the result of an action to be the nearest
possible world in which the explicit consequences of the action hold.

This possible world cannot be constructed merely by inserting the consequences of the
action into the database, since the database may become inconsistent if we do so. In the
blocks world, for example, the consequence of moving a block b to a location [is that the
block is located at its new location: on(b,!). This is inconsistent with the fact on(b, o) giving
the block’s original location.

The essential idea is that if our world description S is inconsistent with the consequences
C of some action, we work with a maximal subset of S that is consistent with C'.

2.1 Formalization

Suppose, then, that we are given an initial world description in the form of some set S of
facts, and that C is some collection of facts that we wish to add to S, even though the set
S U may be inconsistent. We will define a potential world for C' in § to be any consistent

subset of S U C that contains C, and a nearest potential world, or possible world to be a
mazimal such consistent subset.®

As discussed in [6], there is one additional subtlety that we need to consider. Specifically,
there will often be facts that will always hold, so that we want to consider only subsets of
S U C that contain them. Domain constraints such as (4) often have this property; we can
expect (4) to hold independent of the modifications we might make to our world description.
We cater to this formally by supposing that we have identified some set P containing these
protected facts.

This leads us to define possible worlds as follows:®

Definition 2.1 Assume given a set S of logical formulae, a set P of the protected sentences
in our language, and an additional set C'. A possible world for C' in S is any subset T C SUC
such that:

1. CCT,
2. PNSCT,
3. T is consistent, and

4. T 1s mazimal subject to these constraints.

We will denote the set of all possible worlds for C in S by W(C, 5).

We discuss in Section 2.3 the problem of generating possible worlds automatically. The
basic idea is to detect potential contradictions by examining proofs of the negations of facts
in C, and to manipulate the database in such a way that all of these proofs fail.

To use these ideas to reason about action, we define the result of an action a in a situation
s, which we will denote by 7(a,s), to be the intersection of the possible worlds associated
with its set of consequences C'(a). Formally,

S, if W= 0;
r(a,) = {ﬂ{w € W}, otherwise. (5)
The set W is given by
W =W(C(a),5), (6)

and is the collection of possible worlds in which the consequences of the action hold.

2.2 An example

As an example of this construction, consider the scenario in Figure 4, repeated from
[6]. The domain contains a table, a chest, a plant, a portrait and a bookcase (which itself

5Note that both potential worlds and possible worlds need not be closed under logical deduction, and
also that they will in general be uncommitted on sentences that are logically independent of S. The more
accurate phrase “possible partial world” seems rather unwieldy, however.

8This definition is related to one appearing in [1]. It is shown in [4] to be equivalent to ideas appearing
earlier in Reiter’s default logic [14].

' ' Q)
o AL

Figure 4: A household domain

contains a bird and a television). Ventilation for the room is provided by a pair of ducts
under the floor; if both of these are blocked, the room becomes stuffy. Putting an object on
the table will obscure the picture.

Formally, the initial situation shown in the figure can be described as follows (the * and
symbols should be ignored for the moment):

on(bird,top-shelf) rounded (bird)
*# on(tv,bottom-shelf) rounded (plant)
on(chest,floor)
* on(plant,duct2) duct (ductl)
on(bookcase,floor) duct (duct?2) (7)
* blocked(duct?2) in(bottom-shelf,bookcase)
—obscured(picture) in(top-shelf,bookcase)

-—stuffy(room)

There are also the associated domain constraints:

on(z,l)ANl#1' — -on(z,l') (8)

on(z,l)Az# & ANl +# floor — —on(z,l) (9)
rounded(/) — —on(z,!) (10)

duct(d) A Jz.on(z,d) — blocked(d) (11)
Jz.on(z,table) ¢« obscured(picture) (12)

blocked(ductl) A blocked(duct2) <> stuffy(room) (13)

The first domain constraint indicates that an object can be in only one place at any given
time, and the second that two different objects cannot be in the same place (except for the
floor, which can support many objects). The third indicates that no object can be on top of
a rounded object (the bird cage and the plant both fit this description). Domain constraint
(11) indicates that anything on a duct blocks it. The final two domain constraints define
the conditions under which the portrait will be obscured or the room will be stuffy.

There is a single action in this domain, that of moving an object from one location to
another. We will denote this action by move(z,!), where z is the object being moved and [
is the intended destination. The preconditions given for the move action in [6] were that the
object being moved be clear, that its destination either be clear or be the floor, and that no
attempt be made to place an object on top of a rounded object:

p(move(z,l)) = clear(z) A [clear(l) VI = floor| A “rounded(!). (14)
The consequence of the action is that the object is relocated at its destination:
C (move(z,l)) = {on(z,l)}.

Note that the given precondition is intended to be complete, in the sense that its satisfaction
is sufficient to guarantee the success of the action.

Assuming that we are not prepared to drop the domain constraints appearing at the
end of the above description, there is a unique possible world corresponding to the new fact
on(tv,table), the consequence of moving the television to the table. This possible world
corresponds to the removal of the facts indicating that the television is on the bottom shelf of
the bookcase and that the picture is not obscured. It is necessary to remove these facts since,
in light of the domain constraints indicating that an object can be in only one place at any
given time and that anything on the table obscures the picture, they are each inconsistent
with the new location of the television.

There are two possible worlds corresponding to moving the television to duct 1. In one
of these (marked with a # in the domain description), the room becomes stuffy; in the other
(marked with a *), the ventilation system displaces the plant from duct 2. In the absence of
additional information allowing us to select between these two possible worlds (how heavy
is the plant?), we take the conservative approach of removing from the domain description
facts marked with either a # or a *.

Note that we have defined an action whose consequences have no possible world as having
no effect on the domain being investigated; in [6], this was justified by an argument that,
“an action whose consequences have no possible world is effectively impossible.” It is our
intention in the current paper to show that this effective impossibility captures the essence
of the qualification problem: that qualifications on actions correspond to an attempted
violation of the constraints on the domain being investigated.

2.3 Automatic generation of possible worlds

In [4, 6], we discussed the automatic construction of the possible worlds for C' in S. The
basic idea is to remove from S just enough to invalidate any proof of —¢ for each ¢ € C'. To

10

formalize the construction, we need the following definitions:

Definition 2.2 Let C' and S be sets. We define a proof set for C to be any subset T of
S — C such that:

1. TN P =0. All of the sentences in T are unprotected.

2. TUPUC is inconsistent. The negation of some sentence in C follows from the facts
in T and the protected sentences in our language.

3. T is minimal subject to these conditions. The proof set does not contain any extraneous
or irrelevant sentences, so that removing any sentence from it will invalidate the proof.

Definition 2.3 Let A = {S;} be a collection of sets. A hitting set for A is any set H such
that HN S; # @ for every s.

Theorem 2.4 Given sets of sentences C and S, let {S;} be the set of all proof sets for C
in S. Then the possible worlds for C' in S are precisely those sets of the form

SuC-—-H
for some minimal hitting set H for {S;}.

A proof of this result can be found in [4] or [6].

As an example, consider the action of moving the television to the table in our household
domain. In the initial situation, there are two proofs that the television is not on the table.
One uses the fact that the television is in the bookcase, and can be in only one place at a
time. The other uses the fact that the picture is not obscured, as it would be if something
were on the table. The proof sets for on(tv,table) in our initial situation are therefore:

S1 = {on(tv,bottom-shelf)}
Sy = {-obscured(picture)}

The minimal hitting set for these two proof sets is
H = {on(tv,bottom-shelf), "obscured(picture)},

and it follows from this that the unique possible world for on(tv,table) is as described in
Section 2.2.

In this example, the computational effort involved in constructing the possible world was
incurred in the construction of the various proof sets, as opposed to the combinatoric manip-
ulations needed to generate the minimal hitting sets appearing in Theorem 2.4. We assumed
in [6], and will continue to assume in the current paper, that the hitting set construction
does not involve substantial computation.

11

Figure 5: Move A onto B

3 Qualification

3.1 The basic problem

Instead of considering the complex household domain of Section 2.2, suppose that we
consider the extremely simple example of a qualified action shown in Figure 5. The initial
situation is given by:

* on(A,floor)
* on(C, B) (15)
on(B,floor),

and there are the two domain constraints

on(z,)Nl #I' — -on(z,l') (16)
on(z,l)Az# & ANl # floor — -on(z,l), (17)

indicating, respectively, that blocks can be in only one place at a time, and that no two
blocks can be in the same place at the same time (except for the floor).
The move action is described by

p(move(z,l)) = clear(z) (18)
C(move(z,l)) = {on(z,l)},

where we are treating the fact that the target block must be clear as a qualification rather
than as an explicit precondition.

Suppose that we now attempt to move block A onto block B. Since the precondition to
the action is satisfied (that A, but possibly not B, be clear), we proceed by constructing the
nearest possible world in which the result of the action, on(A, B), holds. This possible world
involves removing from our world description the two facts marked with a * in the domain
description (15). We remove the fact that A is on the floor because it conflicts with the
domain constraint (16) saying that a block can be in only one place at a time. The fact that
C is on B is removed because of (17), which says that B can support only one other block.

12

Figure 6: Move A halfway to B

The difficulty is that because of the domain constraint (17) indicating that a block can
support only one other, the qualification to the action (that block B is already occupied) is
defeated as a ramification of the result of the action. Requiring that nothing be removed
from the original database in the possible world construction is also unacceptable, since the
fact giving A’s original location should be removed when A is moved.

Overturning the fact that A was originally on the floor is an intended ramification of the
move operator; overturning the fact that B was originally occupied is not. Furthermore, the
information supplied is completely symmetric with respect to these two facts, so that it will
not be possible to resolve this problem without introducing additional information.

Before proceeding, however, we should note that the problem is not simply to determine
which of a set of domain facts are “ramifications” and which others are “qualifications”,
since these two sets may overlap. In the dumbbell problem of Figure 2, for example, the
ramification of moving A (that B moves as well) should overcome the qualification.

The “dual” to this situation is one where a ramification of the action introduces a quali-
fication. In the pulley problem shown in Figure 6, for example, moving A toward B causes B
to occupy A’s intended destination. Although the action initially appears to be unqualified,
the qualification arises and the action is blocked. We will refer to actions such as this as
self-defeating.

3.2 Protecting domain facts

One solution to the problem of distinguishing qualifications from ramifications is to use the
possible worlds construction to describe the results of an action, but to treat some of the
domain facts as protected when the action is executed.

We might, for instance, require that on(z,[) be protected if we move a block z with z # z,
so that only the location of the block being moved can change. In Figure 5, there will now
be no possible world corresponding to the result on(A4, B), since the fact giving C’s original
location is protected. Since the result of an action for which there are no possible worlds is
defined by (5) to be the same as the situation in which the action was attempted, the action
effectively fails in this case.

Formally, we introduce a new predicate protected(f,a). The intention is that

protected(f,a)

13

indicates that the fact f is protected when we consider a potential action a. In the blocks
world, we would have:

z # z — protected(on(z,!), move(z,')). (19)

The location of a block z is protected when we attempt to move another block z. The incor-
poration of this rule into our system will result in behavior equivalent to that corresponding
to (1).7

Once again, however, it may be extremely difficult to determine which domain facts are
protected for any particular action. In the dumbbell problem of Figure 2, we have a domain
constraint stating that, “B’s location is two units to the right of A’s.” There is no formal
way to distinguish this from our earlier constraint, “B’s location is not the same as A’s.”
The fact that we distinguished the two domain constraints (16) and (17) by isolating the
domain fact giving B’s location does not help us. Instead, we need to modify (19) to become:

z # z A\ ~connected(z,z) — protected(on(z,!),move(z,!')). (20)

Note, however, that the information in (20) above is sufficient to describe the blocked
dumbbell problem of Figure 3. Although B’s location is not protected when we attempt to
move A, C’s location is protected, and the action fails.

The approach represented by (19) and (20) is capable of dealing with the blocked dumb-
bell problem in a simple way because it allows us to identify potential qualifications on the
action in question; whether or not these actually qualify any particular instantiation of the
action is then determined in light of the rest of the domain facts.

We see that this “protection” approach provides us some relief from the need to explicitly
list all of the qualifications to an action. The approach also has computational advantages
over the approach described in Section 1.2, where one must examine all possible disablers in
order to determine if a particular action fails. In the protection scheme, only those disablers
that are relevant to the action in question will be tested.

Unfortunately, the protection approach also runs into trouble in complex situations.
Suppose we return to the household domain pictured in Figure 4, and consider once again
the action of moving the television to duct 1. Suppose also that we add the domain constraint
that the ventilation system is sufficiently powerful to displace any light objects:

stuffy(room) A duct (d) A on(z,d) — —light(z). (21)
We also assume that the plant is light:
light(plant). (22)

The result of moving the television to duct 1 is now for the plant to be dislodged, so that
the plant’s location should not be protected for the action of moving the television to the
duct.

"There is a difference between a “disabling” approach and the current one in that we need to provide
metalevel information in the form of a rule such as (19), while disablers are generally base-level facts. The
computational properties of the two approaches are identical, however.

14

The plant’s location is protected, however, if we attempt to move the television to duct
2 instead of duct 1. We see from this example (and the preceding one) that it will not in
general be possible to delimit the potential qualifications to an action simply by examining
the action itself; once again, we also need to consider the ramifications of the action’s success.

We will refer to this approach as partially exhaustive. We will describe as ezhaustive
formalisms such as that described in Section 1.2, which require that the user specify the
qualifications precisely. In an exhaustive description, if an indicated qualification occurs, the
action is blocked. The protection approach allows us merely to identify potential qualifica-
tions; whether or not any of these succeed in blocking the intended action is determined in
light of the rest of the domain facts.

3.3 Manipulating domain constraints

We argue in [6] that any approach to the formalization of action that requires the enumeration
of all of the ramifications of actions will suffer from severe computational problems when
dealing with complex domains. Unfortunately, it does not appear to be possible to extend
the formalism of the last section to deal in a thoroughly non-exhaustive fashion with the full
range of examples that we have considered.

As evidenced by the final household example of the last section, the problem is that
determining whether or not a specific fact such as on(plant, duct?2) qualifies an action such
as move(tv,ductl) depends not merely on the action and the fact, but on the fashion in
which they interact. The attempt to move block A to block B’s location in Figure 3 fails not
simply because of C’s location, but because C gets in the way. In the simple qualification
problem in Figure 5, moving A once again fails because C gets in the way. Similarly for the
self-defeating pulley problem in Figure 6. The action in the dumbbell problem in Figure 2
succeeds because B doesn’t get in the way.

Rather than think of the action as being qualified by domain facts, suppose that we think
of it as being qualified by the domain constraints. The approach we propose is this: Given
an attempt to move a block to another location, imagine that the domain constraint (17) did
not exist, so that many blocks could occupy identical locations. Now construct the result of
the action, including all of its ramifications. If, in the resulting world, the domain constraint
(17) is still not violated, the action was not qualified: Nothing got in the way. If the success
of the action involves violating the constraint (17), something did get in the way, and the
action should be qualified.

Here is the formal version of this solution. We describe an action a using a precondition
p(a), a consequence set C(a), and a qualification set Q(a). The qualification set contains
those domain constraints that can qualify the success of the action.

Given an action a, we replace (6), defining W, the set of possible worlds for an action,
to be the set of all elements of W(C(a), S — Q(a)) in which the elements of)(a) continue
to hold:

W={VeW(C(a),S —Q(a))|V UQ(a) is consistent }. (23)

15

A B

Move A onto B with C in the way

A/C

;A | B

Domain constraint violated

Figure 7: A qualified action

We now continue to take the result of the action to be

5y — {S, if W= 0;
r(a,§) = N{w € W}, otherwise,

as in (5). Note that if the consequences of an action necessarily conflict with the domain
constraints, so that W(C(a), S) = O, we get r(a,S) = S using either the original definition
(6) or the revision (23).

We now reexamine the examples we have considered thus far, showing that this new
definition does indeed give us the desired result in all cases. The description of the move
operator is given by:

p(move(b,l)) = clear(b)
C(move(b,l)) = {on(b,)}
Q@ (move(d,l)) = {Vz,z,l'.on(z,l') A\ z# z ANl # £floor — —on(z,l')}. (24)

We have made the quantifier in (24) explicit in order to make it clear that the qualifica-
tion set consists of universally quantified domain constraints, as opposed to any particular
instantiations thereof.

The precondition is simply that the block being moved be clear, and the consequence is
that the block is at the destination of the move operation. The qualification set consists of
the single domain constraint stating that only one block can be in any particular location at
any given time. In other words, the action will be qualified if something gets in the way.

We begin with the simple example of Figure 7. The initial state is given by:

* on(A,floor) (25)

16

A B

Move A to B’s location

A B

Domain constraint intact

Figure 8: An unqualified action

on(B,floor)
on(C, B).

We now attempt to move A onto B.

To construct the possible world for on(A, B), we must remove the fact that A is on the
floor, since the domain constraint indicating that A can be in only one place at a time is not
in the qualification set ()(move). But we do not need to remove the fact that C is also on top
of B, since the domain constraint that two blocks cannot coincide is not being considered.
The resulting world is shown in Figure 7, where the * labelling (25) indicates, as before, that
this sentence has been removed from our world description. The domain constraint (17) is
violated in this world, and the action is therefore qualified.

As a second example, consider the dumbbell problem, which is repeated in Figure 8. The
initial state is given as:

* on(A,l)
* on(B,l,)
connected(A, B).

We also need axioms describing the connected predicate. We might have®:

connected(z,y) A on(z,l;) — on(y,ls) (26)
connected(z,y) A on(z,l2) — on(y,ls). (27)

We assume that the axioms describing connection and the fact connected(A, B) are all
protected.

Even in the absence of the domain constraint saying that two blocks cannot both be
located at l5, on(B,[s) is inconsistent with the consequence on(A4,[;) because of the domain

8 An alternative formulation would describe the connected predicate arithmetically, assigning a numeric
position to objects in our domain. We are using the description given only for reasons of simplicity.

17

A B C

Move A to B’s location

A B/C

Domain constraint violated

Figure 9: The blocked dumbbell

constraint (27) describing the effect of the connection between A and B. Thus (17) continues
to hold, and the action is not qualified. The result is given by:

on(A,l,)
connected(A, B).
Using (27), we can now derive on(B,3) from these two facts, so that B’s new location is a

ramification of the move action. See Figure 8.
In the blocked dumbbell problem (Figure 9), the initial description is:

* on(A,l)
* on(B,l,)
on(C,15)
connected(A, B).
As above, B must move when A does, since the two blocks are connected. But C will not
be dislodged if we ignore the domain constraint in @(a). (The only reason it has to move is
that it cannot remain at B’s implied destination.) Thus the domain constraint is violated in

the resulting world and, as depicted in Figure 9, the action fails.

The pulley problem shown in Figure 10 is somewhat different. Here, the initial description

is?:

* on(A,l)
* on(B,l,)
pulley(A4, B).
If we denote by [the location halfway between [; and [, the axioms describing the pulley
system are:
pulley(z,y) Aon(z,l;) — on(y,ls) (28)
pulley(z,y) Aon(z,ls) — on(y,l). (29)

9Once again, an arithmetic description could be used instead.

18

|:' A L B
Move A halfway to B

Domain constraint violated

A/B

Figure 10: The pulley

Ignoring the domain constraint stating that blocks cannot coincide, the possible world
relocating A halfway between [; and [, removes the facts marked with a * above; the domain
constraint (17) is violated in this world, since the physics of the pulley system implies that
both blocks must be located at /4.

Finally, consider the action of moving the television to duct 1 in the household scenario
of Figure 4. Since the two worlds constructed in Section 2.2 did not involve a violation of the
domain constraint (9), this action succeeds.'® If, on the other hand, we were to attempt to
move the television directly to duct 2 (i.e., on top of the plant), the domain constraint would
be violated, since only one object can be on top of the duct. The action would therefore fail.

4 Implementation

4.1 Qualification determination

We have seen that in order to determine whether or not an action a is qualified, we need to
see if the domain constraints in @(a) are violated in the possible worlds resulting from the
execution of the action.

A naive implementation of this idea would involve constructing these possible worlds
while ignoring the facts in @(a), and then attempting to prove the negations of the domain
constraints that had been previously ignored. Assuming that all of these domain constraints
remained valid, the result of the action could be evaluated by recomputing the possible
worlds while considering the qualifying domain constraints.

Fortunately, there is a much cheaper way of performing this computation. In computing
and recomputing the possible worlds, we need to investigate the proof sets for the conse-
quences of the action. Suppose that instead of ignoring the qualifying domain constraints in

10As before, we are unable to determine whether the plant moves or the room becomes stuffy.

19

Q(a) during the initial calculation, we treat them simply as unprotected.!! Having done so,
we can divide the proof sets for C'(a) into two groups: those that contain elements of Q(a),
and those that do not. We will call members of the first group gqualification proof sets, and
members of the second group ramification proof sets.

Now the initial computation of the possible worlds can proceed simply by considering the
ramification proof sets, those that do not intersect @(a). In addition, examination of the
complete collection of proof sets allows us to determine whether or not the qualifying domain
constraints hold in the resulting possible worlds (avoiding the computational expense of a
call to a theorem prover). The basic reason for this is that a qualifying domain constraint
g will remain consistent with a possible world whenever that possible world corresponds to
a hitting set that intersects all of the proof sets constructed for C(a), as opposed to simply
the ramification proof sets.

Formally, we have the following;:

Definition 4.1 Let C, S and Q) be sets. We define a ramification proof set for C to be any
subset T of § — C such that:

1. TNP =0,
2. TU(P—Q)UC is inconsistent, and

3. T is minimal subject to these conditions.

Definition 4.2 Let C, S and Q be sets. We define a qualification proof set for C to be any
subset T of § — C such that:

1. TN P CQ. All of the sentences in T are either unprotected or elements of).
2.TNP#0Q,
3. TU(P —Q)UC is inconsistent, and
4. T s minimal subject to these conditions.
Note that the collections of ramification and qualification proof sets depend on S,) and T'.

These sets will be identified by context in the examples of interest to us.
With these definitions, we now have the following:

Theorem 4.3 Let a be an action, and S a state. Now define {H;} to be the collection of
minimal hittings sets for the ramification proof sets for C(a). The possible worlds corre-
sponding to the result of the action are now given by

SuU C(a) - Hi,

for those H; that intersect all of the qualification proof sets for C(a) in S.

1The time needed to generate the proof sets is independent of which sentences are protected, since this
only affects whether or not a particular sentence is inc